CALDAS LOUIS M2 DATA Al
SOFTSKILLS SEMINAR

o.'\."*% INSTITUT

= POLYTECHNIQUE
‘h”@' DE PARIS

-
=]
e
7
o+
+,

|‘ VLog: A Rule Engine
o »o tor Knowledge

RO~ Graphs

DAVID CARRAL, IRINA DRAGOSTE, LARRY GONZALEZ, CERIEL
JACOBS, MARKUS KROTZSCH, AND JACOPO URBANI

Outline

|. Reasoning Problems

II. VLog functionnalities

[Il. Structure of the VLog rule engine
V. Evaluations

V. Conclusion

Outline

|. Reasoning Problems

[. Reasoning Problems

Semantic Web

Main idea : Give meaning to the data S ———————

encountered on the web. Trust

The web can be considered as a huge 1

virtual library where each book

Ontology

corresponds to a resource. SPARGL OWL wr | &
RDFS l S
Data interchange:
Human/machine knowledge sharing : o XML
Need for a common language. S— S

Semantic Web Stack from wikipedia

(D)

[. Reasoning Problems

Knowledge Graph

A graph = set of triples (subject, predicate, object).
Subject and object are nodes.

Predicate is an arc.

An object can be the subject of another triples.

A Knowledge Graph (KG) = A knowledge base that can be represented
as en entity-relationship graph.

©

[. Reasoning Problems

Knowledge Graph

Knowledge graph are crucial assets for tasks like query answering or
data integration = reasoning problems which can be solved efficiently
by rule engines.

inferred

@ | @ = ' datas/::c‘)’vwledge
N)
N

Base of reasoning problems @

[. Reasoning Problems

Knowledge Graph Example

Example of knowledge base : "Louis Jachiet works for Télécom Paris’

[. Reasoning Problems

Knowledge Graph Example

Example of knowledge base : "Louis Jachiet works for Télécom Paris’

ms \ m

[. Reasoning Problems

Knowledge Graph Example

Example of knowledge base : "Louis Jachiet works for Télécom Paris’
Triple : (Louis Jachiet, works for, Télécom Paris)

works for

AT P

[. Reasoning Problems

Knowledge Graph Example

Example of knowledge base : "Louis Jachiet works for Télécom Paris”.
If we add the rule that the predicate "works for" associates a person
with an organization, we can complete our graph and get new
informations. Example of data integration.

works for

ms \ ®

[. Reasoning Problems

Knowledge Graph Example

Example of knowledge base : "Louis Jachiet works for Télécom Paris”.
If we add the rule that the predicate "works for" associates a person
with an organization, we can complete our graph and get new
informations. Example of data integration.

N -

Organization

works for is an

ms \ ®

[. Reasoning Problems

T Linkesd Open Duts Cloud rom kd-Closelra

Linked open data cloud from https://lod-cloud.net/

[. Reasoning Problems

V0Log,arule-engine

VLog is an open-source rule-based reasoner designed to satisfy the

requirements of modern use cases, with a focus on performance and
adaptibility to different scenarios.

Rules Based System

Query/Data

Data - Knowledge
Advice/sgiT St of in the
vice/solution t form of Rules v
User Rules » Rules
Engine -— -
Interface
_ 1 A 4.
. I Result
A Result Inference Engine Knowledge Base Human Expert

< T (Rules)
I' Data

Application Rule-engine structure from https://medium.com/

[. Reasoning Problems

Rule-engine challenge

@ Performance & efficiency : If there are a large number of logics
then, search and apply them efficiently.

B Expressiveness & portability : System’'s ability to use rules that can
@ describe the conceptual relationships of many relevant use cases

and to be applicable on many different platforms.

co Ability of interfacing with existing technologies.

(1D

[. Reasoning Problems

VLog, Rule-engine challenge

Main challenge : Enable VLog to support a maximum number of
scenarios as part of solving reasoning problems on KG containing
hundreds of millions of facts on an ordinary laptop computer, making
this system valuable for semantic web applications that involve large

KG such as Wikidata.

(1)

Outline

Il. VLog functionnalities

[1. VLog functionnalities

Functionality Overview

Starting point : We want to know how many people died of cancer last
year ?

Through this query answering task, we will discover VLog's main
features.

We will use two data sources : Disease Ontology (DOID), which contains
information about human diseases and their relationship and Wikidata
from which we retrieve information about recent fatalities attributed to

certain diseases.

[1. VLog functionnalities

Functionality Overview

Starting point : We want to know how many people died of cancer last

year ?
subClHier(X,Y') :- doidRdf(X, rdfs:subClassOf, Y'). (1)
subClHier(X, Z) :- subClHier(X,Y"), doidRdf(Y, rdfs:subClassOf, 7). (2)
doid(X, Y) :- doidRdf(X, geneon:id, Y). (3)
cancerDisease(Z) :- subClHier(X,Y), doid(Y, "DOID:162"), doid(X, Z). (4)
diedOfCancer(X) :- deathCause(X, Y'), diseaseld(Y, Z), cancerDisease(Z). (5)
diedOfNonCancer(X) :- deathCause(X, YY), diseaseld(Y, Z), ~ cancerDisease(Z). (6)
hasDoid(X) :- diseaseld(X,Y). (7)
diedOfNonCancer(X) :- deathCause(X, YY), ~ hasDoid(Y). (8)
deathCause(X, Z) :- recentDeathsCause(X, 7). (9)
deathCause(X, V') :- recentDeaths(X). (10)

Example for rule reasoning and data integration @

[1. VLog functionnalities

Basic rule reasoning

VLog will reason over this data using these rules which are written as in
logic programming (H:- A1, A2,..., AN <-> H if AT and A2 ... and AN).

Example : canFly(X) :- bird(X)

subClHier(X,Y) :- doidRdf(X, rdfs:subClassOf, V). (1)
subClHier(X, Z) :- subClHier(X,Y"), doidRdf(Y, rdfs:subClassOf, Z). (2)
doid(X, Y) :- doidRdf(X, geneon:id, Y). (3)
cancerDisease(Z) :- subClHier(X,Y), doid(Y, "DOID:162"), doid(X, Z). (4)

[1. VLog functionnalities

Combining facts from

different input sources

VLog can load data from many different sources (in order to support a

maximum of scenarios).

deathCause(X, Z) :-|recentDeathsCause(X, 7). (9)

deathDate; wdt:P509 ?causeOfDeath .
FILTER (YEAR(?deathDate)=2018)}

SELECT ?human, ?causeOfDeath WHERE { ?human wdt:P31 wd:Q5; wdt:P570 ?

SPARQL Query on Wikidata End-Point

diedOfCancer(X) :- deathCause(X, Y), diseaseld(Y, Z), cancerDisease(Z). (5)

With this, we can find 562 cancer-related deaths in Wikidata. @

[1. VLog functionnalities

Negation

VLog supports stratified negation. Using ~ for negation rule.

diedOfNonCancer(X) :- deathCause(X,Y), diseaseld(Y, Z), ~ cancerDisease(2).
hasDoid(X) :- diseaseld(X,Y).
diedOfNonCancer(.X) :- deathCause(X, Y), ~ hasDoid(Y).

A~ N
o 3 O
— e

With this, we can find 1849 non-cancer casulaties in Wikidata.

[1. VLog functionnalities

Existentials rules

Problem : 23% of recent deaths in Wikidata were due to cancer.
Cause : Many deceased have no cause of death stated.
Solution : Use existentials rules :

V x.3dv.deathCause(x, v) < recentDeaths(x).

diedOfNonCancer(X) :- deathCause(X, Y), ~ hasDoid(Y). (8)
deathCause(X, Z) :- recentDeathsCause(X, 7). (9)
deathCause(X, V) :- recentDeaths(X). (10)

Now we can apply (8) even in cases where no cause was specified, we
can find 16173 deaths that are not known to be caused by cancer. @

[1. VLog functionnalities

Flexibility

VLog supports many ways of defining rules (conversion of OWL
ontologies into rules, OWL classes and properties become unary and
binary predicates) and many syntaxes for them.

Reasoning implementation : VLog can use two chase algorithm,
standard chase (main algorithm) and skolem chase. In addition, VLog
implements som heuristic optimisations (QSQR and Magic Sets).

I[. Introduction to semantic web

V0Log, Rule-engine solution

Performance & efficiency : Using a vertical storage layout that
@ stores derivations column-by-column rather than row-by-row
--> Memory savings due to data-structure sharing.

Expressiveness & portability : VLog supports predicates of
arbitrary arity and existential rules. And for portability, few external
dependencies and strict separation between underlying databases
and the set of derivations.

Ability of interfacing with existing technologies : architecture that
can make use of many different data sources. @

Outline

[1l1. Structure of the VLog rule engine

[1I. Structure of the VLog rule engine

VLogs Structure - 4 components

System Interface Reasoner Derivation storage

[
[
|
) (e
[N
4 T
|
m Materialization Engine EI 3 /
========== —
Java APls @ @ @

OWL support Input Iayer (MySQL) (Trident) (CSsV)

RDF support Dictionary (MgnetDB) (SPARQL) (ODBC)

Overview of the system architecture of VLog @

| Table 2

Magic Sets

Command Line

[Table 3 |

Web Interface

—_ T s e e e /e /s

—

[1I. Structure of the VLog rule engine

VLogs Structure - 4 components

Backend (C++)

System Interface Reasoner Derivation storage

| Table 2

Magic Sets

@ [Table 3 |

m Materialization Engine 3 /
Java APIs @

OWL support Input Iayer (MySQL) (Trident) (CSV)

RDF support Dictionary (MﬂnEtDB) (SPARQL) (ODBC)

Overview of the system architecture of VLog

Command Line

Web Interface

[
[
[
[
[
[
[
[
[

—

[1I. Structure of the VLog rule engine

Backend Components - Input layer

Can read informations from

Input layer

seanaL) (opec

Provides access to the underlying databases.

29

[1I. Structure of the VLog rule engine

Backend Components - Derivation

Derivation storage

G;ble 1

Table 2

storage

Characteristic design choice : "vertical”
derivation storage that represents all facts
that are computed during reasoning.

Columns can have different data
structures to save memory.
Optimised storage.

29

[1I. Structure of the VLog rule engine

Backend Components - Reasoner

Two types of reasoning is

| Reasoner

o . Full
Materialization Engine
materialisation

supported :

[1I. Structure of the VLog rule engine

System interface

System Interface

] Stand-alone programs (don't need Java layer)

Web Interface

Java APls Library VLog4j : complete framework for working with

‘ OWL support

rules and facts, which allows the engine to be used

| RDF support within larger applications.

[1I. Structure of the VLog rule engine

Hide Content
Memory Monitor Rules
Occupied RAM: 135/15722 MB deathCause(X, Z) :- recentDeathsCause(X, Z)
deathCause(X, Z) :- recentDeaths(X)
doid(Iri,DoidId) :- doidTriple(Iri,
<http://www.geneontology.org/formats/oboInOwl#id>,DoidId)
()q&] hasDoid(X) :- diseaseId(X,DoidId)

diseaseHierarchy(X,Y) :- doidTriple(X,<http://www.w3.0rg/2000/01/rdf-

schema#subClass0f=,Y)

diseaseHierarchy(X,Z) :- diseaseHierarchy(X,Y), doidTriple(Y,

<http://www.w3.0rg/2000/01/rdf-schema#subClass0f=,Z)
Refresh rate (ms): |1000

Command line: cancerDisease(Xdoid) :- diseaseHierarchy(X,Y), doid(Y, "DOID:162"), doid(X, Xdoid)

server --edb
fexamples/doid_example_web_interface/edb.c

]) humansWhoDiedOfNoncancer(X) : -deathCause(X,Y),diseaseld(Y,Z),~cancerDisease(Z)
Details EDB predicates humansWhoDiedOfNoncancer(X) :- deathCause(X,Y), ~hasDoid(Y)

Name: doidTriple
Arity 3
Size 221443
Type INMEMORY
Name: diseaseld
Arity 2
Size 11779
Type SPARQL
Mame: recentDeaths
Arity 1
Size 17626 -
Type SPARQL Load from file: | Choose File | rules.txt

Mame: recentDeathsCause

humanswWhoDiedOfCancer(X) :- deathCause(X,Y), diseaseld(Y,Z), cancerDisease(Z)

Arity 2 |Load Rules| Launch Materialization
Size 25189

Type SPARQL

Details current program Queries to prematerialize |Show Content
M. Rules: 10

|Get size IDB tables|

Overview of the web interface of VLog

Web interface

Specify the rules without
using any programming
language.

Outline

V. Evaluations

IV. Evaluation

Evaluations

Note that it's hard to compare different recursive rule engines between them.
Each of them support very distinct features. It's more a comparison of features
than performance.

Engine Inputs Neg. Eq. Incr. Mult. Free license

DLV 2 [2,24] 1 + (ASP) + + - -

Graal [4] 1,2 — — - + + (CeCILL)
RDFox [29] 2 = + + - -

Vadalog [5,17] 1,2,3 — + - + -

VLog 1,2,3,4 + (strat.) - — + + (Apache2)

Features of in-memory Datalog reasoners: Inputs (1: RDBMS, 2: RDF files, 3:CSV files, 4: SPARQL endpoints);
Neg. (negation semantics); Eq. (optimised equality reasoning); Incr. (incremental updates); Mult. (integrating

data from multiple sources) @

Outline

V. Conclusion

V. Conclusion

Conclusion

Problem : Solve reasoning problems on large KGs, which in turn require

efficient reasoning systems to be implemented.

Solution : VLog, a rule-based reasoner designed to satifsfy the

requirements of modern use cases (multiple data sources, existential
rules, stratified negation...).

Future work: Introduce support for datatypes, especially numbers,

equality and incremental reasoning, new optimisations on the execution

order of rules... @

Thanks for listening

VLog's GitHub Link : https://github.com/karmaresearch/viog

Can ask questions about

composed by /= ence) —

Person | Pres
CAN ASK
QUESTIONS TO
is g IS a
7 o e

ouis \ presents L/og\

Diesease ontology

0o Disease Ontology
I S E AS E == - (@diseaseontology
Check out DO's guarterly website

NTO LOGY updates: new Import and Subset

nanac naw Clinical oo Cacoc

DOID:162 m | Advanced Search =

Mavigation @ welcome @ Cancer x|\ _§ Search: DOID:162

"l el "l Rl Rt - m o mw _— o E Em R R

QBQ tree View OWL tree 7]

3 Sqdisease Metadata Submit Comment som Visualize I:-I S di EE ESE

= disease of cellular proliferation
[+ |~ cancer ID DOID: 162

=) dizease of cellular proliferation

A disease of cellular proliferation that is malignant and primary, characterized
by uncontrolled cellular proliferation, local cell invasion and metastasis.

Definition http://en.wikipedia.org/wiki/cancer, http://www2.merriam-webster.com/cgi- I_I IS ::anﬂﬂr

bin/mwmednlm?book=Medicalfva=cancer

[CDIQCM:C80.1
Coacon +] cell type cancer
ICDO:MB000/3

Xrefs MESH:D009369
NCI:C9305 I
SNOMEDCT_US_2020_03_01:269513004 Ii-l E n'gan SFS Em ﬁanl:ﬂ.r
UMLS_CUI:CO0006826

DO_AGR_slim
DO FlyBase slim
DO_GXD_slim
MCIthesaurus

Subsets

malignant neoplasm [EXACT]
Synonyms malignant tumor [EXACT]
primary cancer [EXACT]

Parent

. . is_a disease of cellular proliferation
Relationships

Add an item to the term tracker

Pictures from https://disease-ontology.org/

Table versus Graph

Table Graph

Data structure Column Coded in the graph

Data Cell Coded in the graph
Flexibility Hard to change structure Base on upgradeability

Interoperability Proprietary encryption Non proprietary encryption

Lisibility Easy for human Easy for machine

(59

LA JOCONDE
A WASHINGTON

DA VINCI

palsIA sey

is a friend of

Jan 11984
Pictures from https://yashuseth.blog/2019/10/08/introduction-question-answering-knowledge-graphs-kgqa/

@prefix rdfs: <http://wuw.w3 . org/2006/01/rdf-schema#> .
@prefix wdgs: <https://query.wikidata.org/> . a C O I l Xa I I l e
I
@source doidTriple(3): load-rdf("src/main/data/input/doid.nt.gz")
@source diseaseld(2): spargl(wdgs:sparqgl, "disease,doid", "?disease wdt:P699 ?doid .")
@source recentDeaths(1): sparql{wdqs:spargl, "human",
" ?human wdt:P31 wd:Q5;
wdt:P570 ?deathDate .
FILTER (YEAR(?deathDate) = 2018)''")
@source recentDeathsCause(2): sparql(wdgs:sparqgl, "human,causeOfDeath™,
" ?human wdt:P31 wd:Q5;
wdt:P578 ?deathDate ;
wdt:P589 ?cause0OfDeath .
FILTER (YEAR(?deathDate) = 2018)''")

% Combine recent death data (infer "unknown" cause if no cause given):
deathCause(?X, ?Z) :- recentDeathsCause(?X, ?Z) .
deathCause(?X, !Z) :- recentDeaths(?X) .

% Mark Wikidata diseases that have a DOID:
hasDoid(?X) :- diseaseId(?X, ?DoidId) .

% Relate DOID string ID (used on Wikidata) to DOID IRI (used in DOID ontology)
doid(?Iri, ?DoidId) :- doidTriple(?Iri, <http://www.geneontology.org/formats/oboInOwl#id>, ?DoidId)

% Compute transitive closure of DOID subclass hierarchy
diseaseHierarchy(?X, ?Y) :- doidTriple(?X, rdfs:subClass0Of, ?Y) .
diseaseHierarchy(?X, ?Z) :- diseaseHierarchy(?X, ?Y), doidTriple(?Y, rdfs:subClassOf, ?Z)

% Find DOID ids for all subclasses of cancer:
cancerDisease(?Xdoid) :- diseaseHierarchy(?X, ?Y), doid(?Y, "DOID:162"), doid(?X, ?Xdoid) .

% Compute who died of cancer and who died of something else (including diseases unknown to DOID):
humansWhoDiedOfCancer(?X) :- deathCause(?X, ?Y), diseaseId(?Y, ?7Z), cancerDisease(?7Z) .
humansWhoDiedOfNoncancer(?X) :- deathCause(?X, ?Y), diseaseld(?Y, ?Z), ~cancerDisease(?Z) .
humansWhoDiedOfNoncancer(?X) :- deathCause(?X, ?Y), ~hasDoid(?Y) .

